Fast and rigorous arbitrary-precision computation of Gauss-Legendre quadrature nodes and weights

نویسندگان

  • Fredrik Johansson
  • Marc Mezzarobba
چکیده

We describe a strategy for rigorous arbitrary-precision evaluation of Legendre polynomials on the unit interval and its application in the generation of Gauss-Legendre quadrature rules. Our focus is on making the evaluation practical for a wide range of realistic parameters, corresponding to the requirements of numerical integration to an accuracy of about 100 to 100 000 bits. Our algorithm combines the summation by rectangular splitting of several types of expansions in terms of hypergeometric series with a fixed-point implementation of Bonnet's three-term recurrence relation. We then compute rigorous enclosures of the Gauss-Legendre nodes and weights using the interval Newton method. We provide rigorous error bounds for all steps of the algorithm. The approach is validated by an implementation in the Arb library, which achieves order-of-magnitude speedups over previous code for computing Gauss-Legendre rules with simultaneous high degree and precision.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iteration-Free Computation of Gauss-Legendre Quadrature Nodes and Weights

Gauss–Legendre quadrature rules are of considerable theoretical and practical interest because of their role in numerical integration and interpolation. In this paper, a series expansion for the zeros of the Legendre polynomials is constructed. In addition, a series expansion useful for the computation of the Gauss–Legendre weights is derived. Together, these two expansions provide a practical ...

متن کامل

Fast and Accurate Computation of Gauss-Legendre and Gauss-Jacobi Quadrature Nodes and Weights

An efficient algorithm for the accurate computation of Gauss–Legendre and Gauss– Jacobi quadrature nodes and weights is presented. The algorithm is based on Newton’s root-finding method with initial guesses and function evaluations computed via asymptotic formulae. The n-point quadrature rule is computed in O(n) operations to an accuracy of essentially double precision for any n ≥ 100.

متن کامل

Computation of Gauss-kronrod Quadrature Rules with Non-positive Weights

Recently Laurie presented a fast algorithm for the computation of (2n + 1)-point Gauss-Kronrod quadrature rules with real nodes and positive weights. We describe modifications of this algorithm that allow the computation of Gauss-Kronrod quadrature rules with complex conjugate nodes and weights or with real nodes and positive and negative weights.

متن کامل

Gauss-Green cubature and moment computation over arbitrary geometries

We have implemented in Matlab a Gauss-like cubature formula over arbitrary bivariate domains with a piecewise regular boundary, which is tracked by splines of maximum degree p (spline curvilinear polygons). The formula is exact for polynomials of degree at most 2n− 1 using N ∼ cmn2 nodes, 1 ≤ c ≤ p, m being the total number of points given on the boundary. It does not need any decomposition of ...

متن کامل

An effective method for approximating the solution of singular integral equations with Cauchy kernel type

In present paper, a numerical approach for solving Cauchy type singular integral equations is discussed. Lagrange interpolation with Gauss Legendre quadrature nodes and Taylor series expansion are utilized to reduce the computation of integral equations into some algebraic equations. Finally, five examples with exact solution are given to show efficiency and applicability of the method. Also, w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1802.03948  شماره 

صفحات  -

تاریخ انتشار 2018